Tag Archives: sensors

Amazon provides new details on its plan for a drone superhighway in the sky

When I arrived in San Jose last night, the newspaper on the front desk at the hotel had this headline splashed across the front page: “Drones Putting Lives at Risk.” At least five times this year, fire departments trying to battle wildfires in California were unable to fly their helicopters close enough to assist teams on the ground because small drones flown by ordinary citizens were in the airspace capturing footage of the blaze.

This morning, at NASA’s UTM Convention, Amazon announced details of a plan designed to solve these kinds of problems. The company laid out its vision for a multi-tiered superhighway in the sky, one in which all drones flying above 200 feet would have the ability to communicate with — and ideally sense and avoid — other aircraft. It’s an attempt to put an end to the Wild West atmosphere that has been the norm for uncrewed aerial systems (UAS) over the last five years, replacing it with a next-generation air traffic control system. It hopes to establish a basic regulatory framework and set of technical standards that manufacturers can work toward. All this would prepare the airspace for a time when thousands, even tens of thousands of drones fly over the average city delivering parcels, monitoring air quality, and handing out parking tickets.

Amazon’s proposal, which is in line with similar ideas floated by NASA and Google, would create a slow lane for local traffic below 200 feet and a fast lane for long-distance transport between 200 and 400 feet. Altitudes between 400 and 500 feet would become a no-fly zone, and anything above that is already against FAA regulations for hobbyists. While some commercial drone operators are pushing to fly large UAS above 500 feet, Amazon is avoiding that discussion for now.

Commercial aircraft are governed by FAA’s Air Traffic Control, and in Amazon’s vision, there would be a similar central command and control network that takes in data about the position of each drone and shares it with every other vehicle connected to the network. There would also be vehicle-to-vehicle communication, similar to what we are starting to see with autonomous automobiles. Access to the different layers of the airspace would be governed by how well your drone can communicate with its pilot, the command and control network, and other drones. “Everyone can have access to the airspace,” says Gur Kimchi, who heads up Amazon’s Prime Air program. “It doesn’t matter if you’re a hobbyist or a corporation. If you’ve got the right equipment, you can fly.”

If you’re operating a radio-controlled quadcopter with no internet connection, then you would be relegated to the area below 200 feet. That may rub some hobbyists the wrong way, but given that even cheap consumer drones are now connected to the internet through their apps, it seems unlikely that there will be too many UAS which fall into this category. And while complex sense and avoid (SAA) technology is not yet widespread among consumer drones, we are already seeing it appear on units like the Lily, in software from Skydio, and in developer hardware like DJI’s Matrice. If the pace of development in this area continues, sense and avoid technology will be standard on consumer drones within a few years.

Still, startups working on consumer facing drones took issue with parts of of the plan. “Amazon’s proposal to create a commercial airspace dedicated to drones is smart thinking for the future of its business proposition,” said Antoine Level, CEO of Squadrone System, the company behind the HEXO+. “The uptake of drones means that regulation will need to change to adapt; however, given the utility of personal-use application of drones, regulation must be careful not to regulate commercial use in such a way that drones become too costly to deploy and inaccessible to consumers, as this will in turn create a bar to their usage and adoption.”

In traditional air traffic control, humans have handled much of the work. But with small UAS, the number of aircraft in the sky at any given time is likely to be many times greater than the number of commercial aircraft. So Amazon is proposing we let the machines handle more of the work themselves. “Right now the standard is an aircraft that can basically fly itself, with a human at the controls to take over at anytime,” says Kimchi. “But with UAS, there won’t be a single operator for every drone. We need a lot more automation than we have with the traditional model.”

Amazon says its drones would automatically adjust their path if they are on a collision course, and also warn one another about obstacles. “I am from Seattle, there are many seagulls,” Kimchi says. “Our drone would automatically get out of the way and also alert others in the area.”

This new air traffic control system would also link UAS with traditional aircraft. If a helicopter from the fire department needed to fly low over an emergency, for example, it would be able to communicate with command and control, warning drones it was in the area, and creating a geofenced area around itself that would become a no-fly zone, as depicted in the graphic above.

Read more

SCHIEBEL DEMONSTRATES THE CAMCOPTER® S-100 MARITIME CAPABILITIES FOR THE BRAZILIAN NAVY

Vienna, 5 June 2014 – Schiebel´s dedication to the maritime domain and its ability to respond to the evolving unmanned systems requirements lead to a series of trials for the Brazilian Navy from 2nd to 5th June near San Pedro, Brazil, from the Brazilian Amazonas Class Ship APA.

Schiebel’s unmanned helicopter CAMCOPTER® S-100 convinced representatives of the Brazilian Navy and Ministry of Defense of its outstanding capabilities as a VTOL UAS (Unmanned Air System), after series of sorties were flown from the sea near San Pedro,
Brazil (160 km east from Rio de Janeiro). In support, a number of presentations were given over four days to the attending officers, covering the unique maritime capabilities of the S-100.

S-100 CAMCOPTER fitted with SELES ES PicoSAR, L3 Wescam MX-10 and AIS Receiver
S-100 CAMCOPTER fitted with SELES ES PicoSAR, L3 Wescam MX-10 and AIS Receiver

The demonstration flights were conducted using scenarios agreed with the Brazilian Navy and designed to evaluate the capabilities of its payloads: L3 Wescam MX-10, Selex ES SAGE ESM, Selex PicoSAR Radar and AIS (Automatic Identification System), highlighting the extensive portfolio of available payloads for the CAMCOPTER® S-100.  All trials were carried out during both day and night at ranges out to 44 nautical miles with target detection out to 90 nautical miles.

The programme successfully demonstrated the CAMCOPTER® S-100 capability to meet the operational needs of Maritime Commanders in such complex, dynamic environments.

Source: Schiebel Press Release

About Schiebel:
Founded in 1951, the Vienna-based Schiebel Group of companies focuses on the development, testing and production of state-of-the-art mine detection equipment and the revolutionary CAMCOPTER® S-100 Unmanned Air System (UAS). Schiebel has built an international reputation for producing quality defense and humanitarian products, which are backed by exceptional after-sales service and support.  Since 2010 Schiebel offers the new division composite and is able to supply high-tech customers with this high-quality carbon fiber technology. All products are quality-controlled to meet ISO 9001 standards. With headquarters in Vienna (Austria), Schiebel now maintains production facilities in Wiener Neustadt (Austria), and Abu Dhabi (UAE), as well as offices in Washington DC (USA), and Phnom Penh (Cambodia).

S-100 CAMCOPTER with SAGE ESM fitted
S-100 CAMCOPTER with SAGE ESM fitted

About the CAMCOPTER® S-100:
Schiebel’s CAMCOPTER® S-100 Unmanned Air System (UAS) is a proven capability for military and civilian applications. The Vertical Takeoff and Landing (VTOL) UAS needs no prepared area or supporting launch or recovery equipment. It operates in day and night, under adverse weather conditions, with a beyond line-of-sight capability out to 200 km, both on land and at sea. The S-100 navigates via preprogrammed GPS waypoints or is operated with a pilot control unit. Missions are planned and controlled via
a simple point-and-click graphical user interface. High definition payload imagery is transmitted to the control station in real time. Using “fly-by-wire” technology controlled by a triple-redundant flight computer, the UAV can complete its mission automatically. Its carbon fiber and titanium fuselage provides capacity for a wide range of payload/endurance combinations up to a service ceiling of 18,000 ft.  In its standard configuration, the CAMCOPTER® S-100 carries a 75 lbs/34 kg payload up to 10 hours and is powered with AVGas or heavy fuel.

SCHIEBEL CAMCOPTER® S-100 – WINS CONTRACT WITH THE ITALIAN NAVY

Vienna, 11 February 2014 – The Italian Navy has selected the CAMCOPTER® S-100 UAS (Unmanned Air System) to provide support for its fleet, making it the first European Navy that has S-100 in operational use.

The CAMCOPTER® S-100 has already proven efficient to the Italian Navy as it was the first UAS ever to fly from an Italian ship, the ITS Bersagliere a Soldati Class frigate in April 2012. Being the UAS of choice, the unmanned helicopter will provide its increased operational ability to Italian Navy Commanders once again. The signed contract includes a system, training, integration and spare parts.

With minimal physical, logistics and manpower footprint, the S-100 is especially effective at sea. The system will provide unique degrees of flexibility, versatility and persistence on board of Italian Navy ships employed in anti-piracy missions.

CAMCOPTER_S-100

Hans Georg Schiebel, Chairman of the Schiebel Group of companies said, “The CAMCOPTER® S-100 continues to be a proven and highly sought after asset in maritime operations. Its ability to extend a ship commander’s visible and electronic horizon to
beyond what is conventionally possible is a powerful instrument that helps to counter possible threats, secure routes and control recourses at less operational cost. This quality has already garnered the interest of several global navies where the S-100’s
robust nature has proven effective, particularly in the unforgiving maritime environment.”

Mounted with a Wescam MX-10 and a Shine Micro AIS (Automatic Identification System), the CAMCOPTER® S-100 has the capability to collect time-critical data during uninterrupted periods of up to 6 hours, and can hover, which provides decision makers with a flexible unique means of collecting and disseminating information. Additionally, the S-100 will be mounted with a Schiebel-designed harpoon system, which supports takeoff and landing in conditions up to Sea State 5.

About the CAMCOPTER® S-100:
Schiebel’s CAMCOPTER® S-100 Unmanned Air System (UAS) is a proven capability for military and civilian applications. The Vertical Takeoff and Landing (VTOL) UAS needs no prepared area or supporting launch or recovery equipment. It operates in day and night, under adverse weather conditions, with a beyond line-of-sight capability out to 200 km, both on land and at sea. The S-100 navigates via preprogrammed GPS waypoints or is operated with a pilot control unit. Missions are planned and controlled via
a simple point-and-click graphical user interface. High definition payload imagery is transmitted to the control station in real time. Using “fly-by-wire” technology controlled by a triple-redundant flight computer, the UAV can complete its mission automatically. Its carbon fiber and titanium fuselage provides capacity for a wide range of payload/endurance combinations up to a service ceiling of 18,000 ft. In its standard configuration, the CAMCOPTER® S-100 carries a 75 lbs/34 kg payload up to 10 hours and is powered with AVGas or heavy fuel.

For further information, please contact:
Andrea Blama
Tel: +43 (1) 546 26-44
Email: pr@schiebel.net
www.schiebel.net

or enquiries@unmannedsystemsaustralia.com.au

 

SCHIEBEL CAMCOPTER® S-100 – SUCCESSFUL INTEGRATION WITH THE FLIR SYSTEMS POLYTEC AB CORONA 350 SENSOR

Schiebel and FLIR Systems Polytec AB are proud to announce the successful integration of the Schiebel CAMCOPTER® S-100 Unmanned Air System (UAS) with the CORONA 350 Airborne Sensor. This successful integration marked the first time that this airborne sensor was flown on board a UAV.

The Schiebel CAMCOPTER® S-100 has carried out a series of successful test flights in Grossmittel, Austria, to fully evaluate the combined capability of both systems. The Corona 350 is a four axis gyro-stabilized gimbal containing four different cameras including an ultraviolet camera for corona detection, a thermal imaging camera for detecting hot-spots in power lines, a visual light camera and a digital frame camera.

CAMCOPTER S-100_FLIR CORONA 350

What makes the Corona 350 unique is its ability to overlay its ultraviolet and color TV video data to create a combined image that allows operators to detect and identify coronal discharges – areas of ionized air – that are known to damage power line insulators and other electrical components.  The powerful combination of the Schiebel S-100 and the FLIR Corona 350 allows companies to carry out aerial inspections quickly and efficiently. Additionally it is the perfect method of reducing costs making it an ideal solution for utility companies to perform inspection and maintenance of transmission lines, distribution networks and substations.  This application typically requires repetitive surveying of power lines and is usually carried out by manned helicopters or ground patrols at significant risk to the pilot and crew. The advantage of using the unmanned CAMCOPTER® S-100 UAS over manned helicopters are that the system is uniquely capable of operating with a much lower risk, can carry advanced sensors for increased stand-off distance, is significantly quieter than manned helicopters and can operate  for up to 10 hours per mission and in line of site ranges out to 200 kms.  The unmanned CAMCOPTER® S-100 UAS is also significantly lower cost per hour to run compared to manned aviation systems due to the much higher insurance and safety margins required for manned aircraft to operate in this very dangerous environment.

About the FLIR Systems Polytec AB Corona 350

The Kelvin 350 and Corona 350 series are 35 cm (14”) gimbals housing the infrared core from the FLIR Systems 660 series of infrared cameras, a HD or SD daylight video camera, and a high resolution digital still frame camera. Gimbal weight varies between 24.5 to 27 kg (54 to 59.5 lbs) depending on payload selection.

FLIR systems Corona 350

 

  • 4 axis active stabilization
    The design is four axis active gyro-stabilized based upon very low drift fiber-optic gyroscopes and a digital servo motor control system and a patented two axis linear isolator. This unique design offers outstanding stability ensuring easy steering and accurate imaging independent of aircraft movements.
  • UV camera detects Corona in broad daylight
    The corona camera is capable of detecting and producing video images of the energy generated by the corona phenomena. Corona and arcing occur by stress of the electric field which is not current dependent and therefore can only be revealed by UV inspection. The camera is highly sensitive,  3 x 10-18 watt/cm2, and fully solar-blind meaning that Corona can be visualized in full daytime. The camera contains the UV detector to image the corona and a color Day TV to image the surrounding scene. The signals from the two sensors are blended together and presented to the operator. The three field of view lens (16º /  8º / 4º) permits long range detection and close up analysis of Corona.
  • Radiometric infrared camera
    The thermal imaging camera can easily identify objects from their thermal signature or power line problems where the fault is apparent as a change in temperature. The camera contains a high definition 640×480 pixel detector that allows temperature readings either in real time or from a stored image. It delivers exceptional sensitivity, resolution, and image quality for a wide variety of airborne imaging applications. Its 0.03°C sensitivity and ±1°C accuracy means precise temperature readings.
  • MegaPixel Digital Photo camera
    The MegaPixel camera captures high resolution still images that provide visual records of faults detected by the infrared camera.
  • GPS Tagging
    GPS data is stored as part of each captured image file name thus permitting geo-referencing of fault locations, areas where animals are roaming….
  • Advanced infrared software
    The interface can transfer 16-bit radiometric data directly into the onboard PC for post-flight analysis of captured infrared images. FLIR’s Reporter Professional software permits retrieval and analysis of IR images and temperature data. It includes temperature display and analysis functions such as isotherms, line profiles, area histograms, and much more.

So far for 2013, the Schiebel CAMCOPTER® S-100 Unmanned Air System (UAS) has had a busy year: flying at IDEX in Abu Dhabi and again at the LIMA Exhibition in Malaysia.  The CAMCOPTER S100 System continues to gain maritime experience and flight hours about the French OPV La’Adroit, and has competed successful integration of the DeckFinder Local Positioning System for automatic GPS-Independent Operation at sea and land.  Other recent development include the integration of the RIEGL VQ-820-GU Hydrographic Airborne LIDAR,  Flight operation from an Italian Navy vessel, operations in the Arctic Circle with the Russian Coast Guard and the ongoing flight performance testing and use with the latest Heavy fuel engine specifically design for demanding Naval operations.  More developments and announcements highlighting the versatility and flexibility of the CAMCOPTER S100 will be announced shortly.

About Schiebel:

Founded in 1951, the Vienna-based Schiebel Group of companies focuses on the development, testing and production of state-of-the-art mine detection equipment and the revolutionary CAMCOPTER® S-100Unmanned Air System (UAS). Schiebel has built an international reputation for producing quality defense and humanitarian products, which are backed by exceptional after-sales service and support. Since 2010 Schiebel offers the new division composite and is able to supply high-tech customers with this high-quality carbon fiber technology. All products are quality-controlled to meet ISO 9001 standards. With headquarters in Vienna (Austria), Schiebel now maintains production facilities in Wiener Neustadt (Austria), and Abu Dhabi (UAE), as well as offices in Washington DC (USA), and Phnom Penh (Cambodia).

About the CAMCOPTER® S-100:
Schiebel’s CAMCOPTER® S-100 Unmanned Air System (UAS) is a proven capability for military andcivilian applications. The Vertical Takeoff and Landing (VTOL) UAS needs no prepared area or supporting launch or recovery equipment. It operates in day and night, under adverse weather conditions, with a beyond line-of-sight capability out to 200 km, both on land and at sea. The S-100 navigates via preprogrammed GPS waypoints or is operated with a pilot control unit. Missions are planned and controlled via a simple point-and-click graphical user interface. High definition payload imagery is transmitted to the control station in real time. Using “fly-by-wire” technology controlled by a triple-redundant flight computer, the UAV can complete its mission automatically. Its carbon fiber and titanium fuselage provides capacity for a wide range of payload/endurance combinations up to a service ceiling of 18,000 ft. In its standard configuration, the CAMCOPTER® S-100 carries a 75 lbs/34 kg payload up to 10 hours and is powered with AVGas or heavy fuel.

 

Two year Research Project Targets Agricultural Productivity

Project URSULA (UAS Remote Sensing for Use in Land Applications) was launched  by Welsh Assembly Minister for Rural Affairs, Elin Jones. The 2 year research and development programme will explore the potential for advanced remote sensing, using small unmanned aircraft, for use in land applications, primarily high input arable farming. The project is supported by the Welsh Assembly Government.

Gubua Group Flying Wing

URSULA will develop market-focussed data products based on imagery captured by a range of sensors mounted in small unmanned aircraft with a launch anywhere, anytime capability. Combining the innovative remote sensing platform with novel processing techniques, URSULA provides a disruptive technology which will open up new avenues for flexible, cost-effective, high resolution data provision. It is anticipated that this will accelerate the adoption of precision farming principles at a critical time for the industry.

There is a growing need for timely, accurate, detailed information on our land as we place greater pressure upon it. A rising population coupled with changes in demand and increasing scarcity of critical resources such as water and energy will place ever-increasing pressure on the land to perform multiple functions. Our food system needs to be sustainable – and economically viable – whilst adapting to climate change and contributing to climate change mitigation.

Project URSULA aims to satisfy some of these needs and provides an opportunity to develop and demonstrate a number of leading edge capabilities such as:

  • Technical agriculture
  • Environmental understanding
  • Increased flexibility in routine UAS operations
  • Advanced algorithm development and data interpretation

A key advantage of UAS remote sensing is the ability to obtain timely higher resolution data than can be currently be achieved, and to use this to drive improved performance, including:

  • Precision agriculture practices:
    • Managing fertilisers, nutrients
    • Variable seed rates
    • Soil moisture indicators
  • Yield assessment
  • Disease and stress detection:
    • Managing pesticides
    • invasive weed mapping
  • Sustainable land management

Our engagement with stakeholders and end users ensures agriculturally led data interpretation and individual farm-level knowledge makes the most of the remote sensing data.

Courtesy SUAS News

CAMCOPTER® S-100 GROWING EXPERIENCE AT SEA ONBOAD OF THE OPV L´ADROIT

Vienna, 17 June 2013 – Since the OPV (Offshore Patrol Vessel) L´Adroit was officially made available to the French Navy in October 2011, the CAMCOPTER® S-100 Unmanned Air System (UAS) was able to prove its highly efficient maritime capability repeatedly.
The Gowind Class L’Adroit, build by DCNS, has been designed to operate, amongst other capabilities, a UAS, and by installing the appropriate cabling and supporting equipment during build, has been fitted out to operate the maritime proven CAMCOPTER® S-100 from day one. The French Defense Procurement Agency (DGA) purchased a S-100 and qualified its integration aboard L’Adroit in the frame of an experimentation ordered by the French Navy. At the moment the French Navy is the only European Navy capable of operating a UAS VTOL from a surface ship.

CAMCOPTER_S-100_L´ADROIT
Embarked on board the OPV L’Adroit, the CAMCOPTER® S-100 has been operating in the Indian Ocean and Asia. Thanks to S-100, the French Navy has been able to evaluate the contribution of UAS during missions assigned to L’Adroit (preventing illegal practices at sea like terrorism, drug trafficking, illegal fishing and illegal immigration, ensuring maritime safety). Over 120 flight hours and 190 take-offs were conducted since the beginning of 2012, with much more to come in the next two years. The tight integration achieved by DCNS between the ship and the S-100 provides high quality information, alerts and decision aids at any time. This project is unique in Europe and helps the French Navy to understand the movements and actions by potential threats at sea, expanding the area of influence and providing high-definition observation and surveillance in real-time.

Schiebel has taken the experience and knowledge gained from this exciting opportunity of operating the CAMCOPTER® S-100 from OPV L’Adroit, and is now working with world class sensor manufacturers to integrate maritime radar, Electronic Support Measures (ESM) and EO/IR sensors into the S-100 system. This will for the first time, provide maritime commanders with an organic, persistent, ISR capability unparalleled for a UAS
in this class.

CAMCOPTER-S-100 with MX-10

About Schiebel:
Founded in 1951, the Vienna-based Schiebel Group of companies focuses on the development, testing and production of state-of-the-art mine detection equipment and the revolutionary CAMCOPTER® S-100 Unmanned Air System (UAS). Schiebel has built an international reputation for producing quality defense and humanitarian products, which are backed by exceptional after-sales service and support. Since 2010 Schiebel offers the new division composite and is able to supply high-tech customers with this high-quality carbon fiber technology. All products are quality-controlled to meet ISO 9001 standards. With headquarters in Vienna (Austria), Schiebel now maintains production facilities in Wiener Neustadt (Austria), and Abu Dhabi (UAE), as well as offices in Washington DC (USA), and Phnom Penh (Cambodia).

About the CAMCOPTER® S-100:

Schiebel’s CAMCOPTER® S-100 Unmanned Air System (UAS) is a proven capability for military and civilian applications. The Vertical Takeoff and Landing (VTOL) UAS needs no prepared area or supporting launch or recovery equipment. It operates in day and night, under adverse weather conditions, with a beyond line-of-sight capability out to 200 km, both on land and at sea. The S-100 navigates via preprogrammed GPS waypoints or is operated with a pilot control unit. Missions are planned and controlled via a simple point-and-click graphical user interface. High definition payload imagery is transmitted to the control station in real time. Using “fly-by-wire” technology controlled by a triple-redundant flight computer, the UAV can complete its mission automatically. Its carbon fiber and titanium fuselage provides capacity for a wide range of payload/endurance combinations up to a service ceiling of 18,000 ft. In its standard configuration, the CAMCOPTER® S-100 carries a 75 lbs/34 kg payload up to 10 hours and is powered with AVGas or heavy fuel.

Source: Press Release